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Thermal Pulse Method and Fourier Analysis
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National Bureau of Standards
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Abstract

Fourier analysis, applied to the recently introduced thermal pulse
method, yields new and unique relations between the time-dependent,
pyroelectric response of a thin specimen and the Fourier coefficients
of the charge or polarization distribution across its thickness. The

new analysis is applied illustratively to thermal pulse data for a

vinylidenefluoride copolymer electret.
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Several new experimental methods have been proposed in recent

(1,2,3)

Letters to probe the spatial distribution of charge and/or polariza-

tion across the thickness of thin (thickness of order 10 um) dielectric samples.

These methods are currently of interest as means to study piezo- and pyro-

(1)

electric polymers. The electron-beam method of Sessler et al. has

a resolution of .1 um, but is destructive in the sense that the measuring
process irreversibly changes the quantities measured. Acoustical methods of

9
generating a propagating pressure step )across a sample in order to measure

its inhomogeneous piezoelectric response are non-destructive; but the step rise

time requirements become severe if a resolution of 1 um is desired (a resolution
S

of 1 um requires a step rise time of s 0.5 ns assuming a sound velocity of

2000 m/s.) Thermal methods of producing transient inhomogeneous strain across

a sample in order to measure its inhomogeneous pyroelectric response as, for example,
d(3l4’5)

in the Collins's thermal pulse metho are both non-destructive and
comparatively easy to implement experimentally (thermal equilibration times

are -1 ms). However, because the thermal equilibration process is diffusive
rather than propagative (wavelike),:informacion contained in the experimental
data about chargé and/or polarization distributions is convoluted with a time-
dependent temperature distribution and somehow must be deconvoluted. The major
and often quoted(1'2’3’4’5) objection to the Collins thermal pulse method has

(3,4,5)

been that the deconvolution procedure yields non-unique charge and/or

polarization distributions.




In this Letter, we show that the Collins' experiment yields the first few

Fourier coefficients of the charge or polarization distribution, not the charge

or polarization diszribution itself as may be supposed from Collins' papers(l’z's).
Further, we present expressions for the response which allow the Fourier coefficients
to be determined from the experimental data by numerical or graphical analysis. We
apply the new expressions to thermal pulse data for a copolvmer of vinylidene
fluoride with tetrafluoroethylene. This example illustrates both the power and

the limitations of the thermal pulse method.

Consider, first, the temperafa;;“T(x,t) at time t across a sample regarded as a
slab of infinite extent and of thickness d (see inset in Fig. 1) after a radiant heat
pulse of duration t  has been applied to the surface x=0. Assume that 1) the
aluminum electrodes have negligible optical transmission and negligible thermal mass;
2) heat flows in the x-direction only; and 3) the sample does not lose heat
to the surroundings. The initial temperature T(x,0) taken at the end of
the thermal pulse is written

T(x,0) = T, + AT (x,oj _ (1)

1
where Tl is the uniform‘temperature of the sample prior to the pulse, and

AT(x,0) is the deviation from T.. In practice, AT(x,0) is a sharply localized

1.
function extending from x=0 with a width £ << d. The temperature at t > 0 is

T(x,t) = T1 + AT(x,t) where (©)

AT(x,t) = ao + ngl a cos (nmx/d) exp(-nzt/tl). (2)




where 1, = dzl(w'zk) where k is the thermal diffusivity, and where

1
1 d
a =3 f AT(x,0) dx = 1lim AT(x,t) (3)
o oo
and
2 d
8w I AT(x,0) cos(nwx/d) dx, for n=1,2,... (4)
o

In the limiting case where AT(x,0) -+ 6(x) all a 's are
n

a = 2a°. for n=1,2,... (5)

However, for a general AT(x,0), the temperature at the surfaces

are described by

aT(0,6) =a + E a exp(-nzt/'rl) (6)
and
ar(a,e) =a, + F D% a ewpia’t/r)). )

Expressions (6) and (7) have been used previously as the basis for thermal

&)

diffusivity measurements . In the present case, the dimensionless quantities

A‘l'(O,t)/ao and A'I‘(d,t)/ao can be obtained by measuring the transient resistance
(4)

of one or both electrodes as done by Collins Then the an/ao's and T, can be

1
determined without- knowing the detailed shape of the light pulse.

T
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Consider, now, the inhomogeneous pyroelectric response. Assume that

real charge of volume density p(x) and elementary dipoles responsible for
polarization i(x) = & P(x) move reversibly when the sample thermally expands
or contracts. Following Collins,(s) the open-circuit voltage due to charge,

Avp, and that due to polarizatiom, AVP, are

ax-a d
AVp(t) » = < [ p (x) rAT(x',t) dx' dx, (8)
(o] o (o]

and

a + ux = & fd

Avp(c) =- eeo

P(x) AT(x,t) dx, 9)
o

where Gl Oy and ap are temperature coefficients (1/x)(dx/dT), (1/e) (de/dT),
and (1/P) (dP/dT) respectively, ¢ is the relative permittivity and ¢ 1is the
o

permittivity of vacuum. Substitution of (2) into the above equations gives

a - a a A
x___ € 4% o' n —n? 10)
Avp(t) £ €€, [.o Ab e n£1 n = t/'rl)]' e
where
d
Ab - f x p(x) dx (11)

d
An = I p(x) sin(nwx/d) dx, for n=1,2,... : Qa2)
o




and
g e = & 2
LR X € ¢ b
AV (¢) = ee: la, B, + Z,a * B exp(-n"t/T)], (13)
where
a 14
B = I P(x) dx 14)
* o
and
: (15)
Bn = I P(x) cos(nmx/d) dx for n=1,2,...
o

It should now be noted that a s An and Bn are coefficients of Fourier series
expansions for AT(x,0), p(x) and P(x) respectively if these are expanded as

cosine, sine and cosine series respectively.

The foregoing analysis shows that the inhomogeneous pyroelectric response

consists of exponentially decaying components with relaxation times Tt /n2.

1
a
Measurement of this response yields Fourier coefficient comhinations (;2) (XE)
a (o) o
G%) in the charge case, or (;g) (39) in the polarization case (or a linear

o o
combination of these in the mixed case). For sufficiently short pulse duration

(tr << rllnz up to the highest n of interest), the approximation an/ao z 2

can be made. Otherwise, an/ao can be obtained from a separate measurement of

the transient resistance of the electrodes. Thus, Fourier coefficients

of the charge or polarization distribution.Ah/Ao or Bn/Bo,can be determined up to
terms with n of order N = /;ITE:. The spatial resolution of the thermal pulse

experiment is roughly d/N. ¥
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Limiting cases of charge and polarization distributions are of interest.

Note that if p(x) + 6(x), then Avo(t) + 0 (i.e., charge on surface x = 0 does

not contribute to AVb(t)), while if p(x) + §(x-d), AVp(t) becomes indisting-

uishable from Avp(t) for uniform polarization. This is a manifestation of

the electrostatic equivalence of p(x) and -dP/dx. Note also that if P(x) -+ 6(x), then
AVp(t) becomes proportional to AT(O,t) 1in (7), while if P(x) + §(x-d), then
AVp(t) becomes proportional to AT(d,t) in (8). This is a consequence of the

symmetrical roles played by a and Bn.

Figure 1 shows signals proportional to open-circuit voltages for two
copolymer samples 50 um thick (vinylidenefluoride with 27% bv weight of
tetrafluoroethylene). For each sample Curve A is for light pulsed at x=0
and Curve B is for light pulsed at x=d. The difference in the samples is
in the poling treatment. Both samples were stored for long periods under
short-circuit conditions after poling. Sample (a) was poled at room temper-

(8)

ature by corona charging with a bias voltage of -2000 V. Curve A, shown
in Figure 1(a) is nearly proportional to the AT(0,t) signal (not shown) at
times t >> trwhere L - 20 us while Curve B is nearly propértional to AT(d,t).
These observations indicate (assuming that all Bn-O-for n>N) a sample with strong 1
localization of polarization towards x=0 as shown qualitatively by (a) in the ;
inset (or a sample with a charge layer imbedded just 1ns;de the sample clése to |
x=0). Sample (b) was poled during crystallization bv maintaining 300 V across
the sample as it was cooled from 130°C and crystallized for 6 hours at 118.5°C
before cooling further to 100°C (0.3 K/min) followed by quenching to room

temperature. The signals for this case, shown in Figure 1(b), indicate a

distributed asymmetric pyroelectric activity.
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Note that series (1) and (13) acquire alternating signs if the
direction of irradiation is changed (in which case a changes to (-l)nan)
or 1f the sample is reversed (in which case Ah and Bn change to -(-1)“;5.n
and -(—l)an). Thus, if separate response signals are obtained by thermally
pulsing opposite surfaces in turn, the even and odd Fourier coefficients can
be obtained separately from the sum and the difference of the two signals.
Visual comparison of the two signals also reveals whether the distribution
of pyroelectric responsivity is symmetric or asymmetric.

Figure 2 shows semi-log plots of the curves A and B from Figure 1(b)
together with (A+B) containing only even terms of the response and (A-B)
containing only odd terms of the response. Assume that
the responses are associated with polarization. Graphical analysis of the
linear part of the odd response gives T, - 4.8 ms (in good agreement with the
value expected from the thermal properties and the thickness of the film) and
2a181 = 14. Removal of this linear part gives a remainder (Curve D) with a
slope 9/11 indicating that 2a3B3 ~ 1.5 and that ZaSBS » 0. Similar analysis
of the even response gives 2a°Bo = 10.2, 2&232 = 5 (from Curve C) and 23434 = 0.

As the pulse duration of tr x 20 us should allow about 10 terms to be observed

(N= /t17tr >10), and terms for n > 4 do not appear in the pyroelectric response

(though they appear in the x=0 resistance signal), it is concluded that the Bn
for n > 4 are negligible compared to the four leading coefficients. The values
of 0232 and 3353 are then corrected to the values 2.675 and 0.775 respectively
by forcing coefficients aoBo, e ‘131’ 3232, - 3333 when inserted into (13)

to yield a curve B' in Figure 2 within experimental uncertainty of measured

Curve B. The polarization distribution obtained from the determined coefficients

assuming a =a, =a,;= Zao is the distribution (b) in the inset of Figure 1.




The samplesdiscussed in this Letter were chosen to illustrate the
theory. Other copolymer samples and homopolymer (polyvinylidenefluoride)
samples under different poling conditions can exhibit nearly uniform polar-
9)

ization™"". 1In such cases, the response is nearly step-like and Bn/Bo =0

for all n.

The present work indicates the ;ource of ambiguity in the Collins' decon-
volution procedure. The thermal pulse data (under conditions similar to those
in Collins' experiments) yields no more than 10 or 15 coefficients (based on
N = /?;7?;). The Collins' electrical analog sought to obtain discrete distri-
butions characterized by 20 adjustable parameters. Any discrete distribution (of which)

there are many) consistent with the determinable Fourier coefficients would

reproduce the measured transients within the noise in the data.

Partial support of this work by the Office of Naval Research is gratefully

acknowledged.




3 FIGURE 1

FIGURE 2

FIGURE CAPTIONS

Inhomogeneous pyroelectric response of two copolymer
samples: (a) sample with pyroelectric activity con-
centrated towards surface x=0; and (b) sample with
diétributed pyroelectric activity. .Signals marked

A are for thermal pulse applied to surface x=0 and
those marked B for thermal pulse applied to surface
x=d. Inset shows thermal pulse arrangment. Polymer
samples have vacuum-deposited, reflecting (partially
absorbing, non-transmitting) electrodes. Polarizations

(a) and (b) shown in the inset are obtained from first

few Fourier moments of corresponding signals.

Graphical analysis of response of Fig. 1(b). A and B,
experimental data; A + B and A - B are even and odd

response (see text). The relaxation time 1, = 4.18 ms,

1
=7, asz = 2.675,

coefficients aoBo =5l alnl a3B3
0.775, aB =0forn> 4 are determined as explained
in text. B' is a plot of Eq.(13) with a replaced by

(-l)uan using these anbn's. C and D represent the

n=2and n= 3 terms respectively.
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